
A Computational Semantics for Communicating

Rational Agents Based on Mental Models

Koen V. Hindriks and M. Birna van Riemsdijk

EEMCS, Delft University of Technology, Delft, The Netherlands
{k.v.hindriks,m.b.vanriemsdijk}@tudelft.nl

Abstract. Communication is key in a multi-agent system for agents
to exchange information and coordinate their activities. For agents that
derive their choice of action from their beliefs and goals it is natural
to facilitate communication about both these attitudes in an agent pro-
gramming language. The traditional approach based on speech act the-
ory, however, does not provide the right tools to do so because of its
emphasis on mental conditions on the speaker. Here, we introduce an
alternative semantics based on the idea that a received message can be
used to (re)construct a mental model of the sender. As coordination is
particularly important, we introduce the concept of a conversation to
synchronize actions and communication in a multi-agent system. Con-
versations are resources at the multi-agent level with restricted access,
which provide a natural counterpart in multi-agent systems for classic
constructs from distributed programming such as semaphores.

1 Introduction

Communication is key in a multi-agent system for agents to exchange information
and coordinate their activities, and therefore needs to be addressed in agent
programming languages. Two main lines of research can be identified when it
comes to agent communication languages: research based on speech act theory
[1, 2] and research based on a social semantics for agent communication (social
commitments) [3, 4].

Speech act theory is a philosophical theory that is based on the idea that
uttering a sentence is an act which can be used to change the world like any
other act. The focus of speech act theory has been on specifying the conditions
that identify the particular act that is performed, thereby focussing most of the
theory on the sender instead of the receiver. Two of the most well-known agent
communication languages that are based on speech act theory are KQML [5] and
the FIPA Agent Communication Language (ACL) [6]. Both languages specify
the semantics of messages by means of their pre-condition, expressing conditions
on the mental states of the sender and receiver of the message that should hold
if the message is sent, and their effect, expressing the effect of the message on
the mental state of the sending and/or receiving agent.1 Both languages use per-
formative labels to specify message types. For example, the precondition for the
1 FIPA does not specify that there should be any effect on the sender [6].

(simplified) FIPA inform(r, φ) message, where inform denotes the performative
label and φ the content of the message, includes that the sending agent believes
φ and the effect is that the receiver r believes φ.

These ACLs have been extensively criticized [7–9]. Here, we mention in par-
ticular their complexity due to the relatively high number of performative labels
and subtle semantical differences between them, and the lack of verifiability.
The latter means that, for example, an agent receiving a message that is sup-
posed to be an informative speech act with preconditions that require truth of
the content, cannot verify these conditions. An important alternative approach
that addresses these and other issues, is the semantics for agent communication
based on social commitments [3, 4]. This approach does not define communica-
tion by referring to the mental states of the involved agents, but focuses on the
social consequences of communication. The basic idea here is that a receiver can
always confront the sender again with a previous message, i.e., by saying some-
thing like: “You told/asked/requested me so”. The processing of the message by
the receiver, however, has moved to the background here.

We can thus see that communication based on speech act theory is prob-
lematic due to its complexity and verifiability. Moreover, the approach based
on social commitments does not say anything about how communication affects
the involved agents. This issue does need to be addressed when developing tech-
niques for communication in agent programming languages, which is what we are
interested in in this paper. The contribution of this paper is the introduction of
an alternative semantics based on the idea that a received message can be used
to (re)construct a mental model of the sender. Our semantics does not spec-
ify any preconditions on the mental states of the agents for sending a message.
Moreover, the effect on the receiver is only that it updates its mental model of
the sender, i.e., the mental state of the receiver itself is not directly updated. A
second contribution is the introduction of the concept of a conversation to facili-
tate the synchronization of actions and communication in a multi-agent system,
which is particularly important to organize agent coordination. Our proposal is
made concrete in the agent programming language Goal [10].

2 Communication in Agent Programming Languages

Communication within other agent programming languages than Goal has
taken a quite pragmatic turn to address the issue discussed above. For exam-
ple, in 2APL the semantics of communication is reduced to a simple “mailbox”
semantics: communicating a message only means that the message is added to
a mailbox and the programmer then needs to write rules to handle received
messages [11]. This reduces the meaning of communication to the bare mini-
mum. The developers of Jason have chosen a small set of primitives, based on
KQML, for which simple default semantics have been defined [8]. For example,
the tell message inserts the content of the message into the receiver’s belief base,
with a tag to identify the source of this information, and the achieve message
inserts the content of the message as a goal in the event base. A function is

introduced to determine whether a message is “socially acceptable”, and only
socially acceptable messages are processed.

Although we take a definite engineering stance in this paper regarding the
design of a semantics for communication, our approach is intended to satisfy
a number of basic criteria. First, the communication primitives should have a
well-defined semantics. Preferably, this semantics provides a basis for verifying
multi-agent systems as well, where agents use these primitives to communicate.
Second, the distinction between beliefs and goals needs to be taken into account
when defining a communication semantics. As Goal agents derive their choice
of action from their beliefs and goals, it is important to be able to communi-
cate about these different reasons for acting as well as to be able to distinguish
between beliefs and goals communicated by other agents. Third, the communica-
tion primitives introduced should be useful for programming Goal agents. This
is a pragmatic criterion that requires minimization of complexity, in particular by
limiting the number of communication primitives and endowing these with easy
to grasp semantics. Fourth, and finally, various speech acts should be definable
using the communication primitives introduced. Ideally, it would be possible to
define or “program” various well-known speech acts such as promises, requests,
etc. in terms of the primitives introduced. It should be kept in mind, however,
that characterizing a particular communication event of a multi-agent system
may be possible only from a designer or observer’s point of view, e.g. by using
a logic to reason about the communication primitives. Initial work to meet this
last criterium, which sets our approach apart from others, is reported in [12].

3 Redesigning Agent Communication

Our proposal for redesigning agent communication in the context of the program-
ming language Goal focuses on the effects of communication on the receiver, a
perspective also taken in [13, 8] but which may be contrasted with social com-
mitment semantics. Doing so is not straightforward and requires that some rea-
sonable decisions are made with respect to defining a communication semantics.
We illustrate this using an example (see also [14]). Consider the utterance “The
house is white”. Its effect on the receiver may be one or more of the following,
ranging from a very strong to a very weak effect:

1. The receiver comes to believe that the house is white.
2. The receiver comes to believe that the sender believes that the house is white.
3. The receiver comes to believe that the sender had the intention to make the

receiver believe that the house is white.
4. The utterance has no effect on the receiver, i.e. its mental state is not changed

as a result of the utterance.

In choosing which of these effects should form the basis for our semantics, we
take a pragmatic engineering stance, and in addition want to avoid making too
strong assumptions. In particular, we consider effect 1 to be too strong in gen-
eral, as it makes the assumption that the sender always convinces the receiver.

Effect 4 is too weak, and not very useful for programming communication among
agents since it would have no effect. Effect 3 would be rather indirect, as it is
no longer very clear what use the communication has, other than to conclude
such indirect statements about the sender’s mind. In practice, using this type
of semantics would be rather similar to effect 4, doing nothing with a message
received from another agent, as making good use of information about the inten-
tions of another agent would require rather involved reasoning patterns. Here,
we choose our semantics according to effect 2, which means that the receiver
makes the assumption that the speaker believes what it says. Obviously, this is
not always a safe assumption to make, as the sender may be lying. However, it
is also not overly presumptuous, as the receiver just takes the utterance of the
sender at face value.

In contrast with effect 1, effect 2 does not affect the mental state of the
receiver directly, but only the mental model that the receiver has of the sender:
as a result of the utterance, the receiver comes to believe something about the
sender, but the utterance does not directly influence the beliefs of the agent about
the environment. This is one of the main ideas of our approach: the direct effect
of communication is that the receiver updates its mental model of the sender.
Additional reasoning may then result in the receiver making updates also to its
own beliefs and goals. However, this is not part of our semantics. For example,
if the receiver knows by experience that the sender is quite reliable, the receiver
may also update its own beliefs accordingly, or use the beliefs of the mental
model of the sender to decide on action (as in the example program of Section
5). This is in contrast with Jason, in which reasoning about the acceptability of
the message is done upon receipt of the message (using the function to determine
the social acceptability), and if the message is acceptable, the mental state of
the agent itself is updated.

The second main idea behind our approach has to do with the types of mes-
sages that we distinguish. For this, we take inspiration from natural language, in
which one uses grammatical structure to differentiate between various types of
communication modes. In the communication framework we propose, we distin-
guish between three message types, derived from three grammatical distinctions
in natural language:

(i) declaratives, typically used to make factual statements about the environ-
ment (e.g., “The house is white.”). Syntactically, a declarative is represented
by •φ. Informally, a declarative message with content φ may be paraphrased
as: “It is the case that φ.” Semantically, the idea is that the receiver r takes
this at face value, and r concludes that sender s believes φ.

(ii) interrogatives, typically used to pose questions about a state of affairs (e.g.,
“Is the house white?”). Syntactically, an interrogative is represented by?φ.
Informally, an interrogative with content φ may be paraphrased as: “Is it the
case that φ?”. Taking this at face value, r concludes that s does not know
whether φ.

(iii) imperatives, typically used to express a desirable state of affairs (e.g., “See
to it that the house is white!”). Syntactically, an imperative is represented

by !φ. Informally, an imperative may be paraphrased as: “Someone, see to
it that φ.” Taking this at face value, r concludes that s has φ as a goal, and
does not believe φ.2

The semantics of interrogatives and imperatives have in common with that
of declaratives that they do not prescribe what the receiver should do in terms
of updating its own beliefs and goals. The semantics of interrogatives does not
define that the receiver should, e.g., adopt the goal to tell the sender about φ.
Similarly, the semantics of imperatives does not define that the receiver should
update its own goals with φ. Moreover, the semantics of imperatives does not
even define whether the uttered imperative should be interpreted as a request,
or simply as information about the goals of the sender. Adding these kinds of
interpretations and additional reasoning on whether to update the receiver’s
own beliefs and goals is left to the agent programmer. For example, in certain
applications imperatives might always be interpreted as requests, while in others
one might want to make a distinction between these and imperatives that express
the goals of the sender. However, we argue that in all of these cases, it makes
sense to update the mental model that the receiver has of the sender as informally
described above.

4 A Communication Semantics Based on Mental Models

In this section, we make the informal semantics discussed above precise in the
context of Goal.

4.1 Mental Models and Mental States

Mental models play an essential role in this semantics and are introduced first.
Goal agents maintain mental models that consists of declarative beliefs and
goals. An agent’s beliefs represent its environment whereas the goals represent
a state of the environment the agent wants. Beliefs and goals are specified using
some knowledge representation technology. In the specification of the operational
semantics we use a propositional logic L0 built from a set of propositional atoms
Atom and the usual boolean connectives. We use |= to denote the usual conse-
quence relation associated with L0, and assume a special symbol ⊥ ∈ L0 which
denotes the false proposition. In addition, the presence of an operator ⊕ for
adding φ to a belief base and an operator � for removing φ from a belief base
are assumed to be available.3 A mental model associated with a Goal agent
needs to satisfy a number of rationality constraints.
2 The latter part, that s does not believe φ is derived from a rationality constraint.

An agent should not have a goal to achieve something if it believes it has already
been achieved.

3 We assume that Σ ⊕ φ |= φ whenever φ is consistent, and that otherwise nothing
changes, and that Σ � φ �|= φ whenever φ is not a tautology, and that otherwise
nothing changes. Additional properties such as minimal change, etc. are usually
associated with these operators (see e.g. [15]) but not relevant in this context.

Definition 1. (Mental Model)
A mental model is a pair 〈Σ,Γ 〉 with Σ,Γ ⊆ L0 such that:

• The beliefs are consistent: Σ 	|= ⊥
• Individual goals are consistent: ∀γ ∈ Γ : γ 	|= ⊥
• Goals are not yet (believed to be) achieved: ∀γ ∈ Γ : Σ 	|= γ

In a multi-agent system it is useful for an agent to maintain mental models
of other agents. This allows an agent to keep track of the perspectives of other
agents on the environment and the goals they have adopted to change it. A
mental model maintained by an agent i about another agent j represents what
i thinks that j believes and which goals it has. Mental models of other agents
can also be used to take the beliefs and goals of these agents into account in its
own decision-making. An agent may construct a mental model of another agent
from the messages it receives from that agent or from observations of the actions
that that agent performs (e.g., using intention recognition techniques). Here we
focus on the former option.

We assume a multi-agent system that consists of a fixed number of agents.
To simplify the presentation further, we use {1, . . . , n} as names for these agents.
A mental state of an agent is then defined as a mapping from all agent names
to mental models.

Definition 2. (Mental State)
A mental state m is a total mapping from agent names to mental models, i.e.
m(i) = 〈Σi, Γi〉 for i ∈ {1, . . . , n}.
For an agent i, m(i) are its own beliefs and goals, which was called the agent’s
mental state in [10].

A Goal agent is able to inspect its mental state by means of mental state
conditions. The mental state conditions of Goal consist of atoms of the form
bel(i, φ) and goal(i, φ) and Boolean combinations of such atoms. bel(i, φ) where
i refers to the agent itself means that the agent itself believes φ, whereas bel(i, φ)
where i refers to another agent means that the agent believes that agent i believes
φ. Similarly, goal(i, φ) is used to check whether agent i has a goal φ.4

Definition 3. (Syntax of Mental State Conditions)
A mental state condition, denoted by ψ, is defined by the following rules:

i ::= any element from {1, . . . , n} | me | allother
φ ::= any element from L0

ψ ::= bel(i, φ) | goal(i, φ) | ψ ∧ ψ | ¬ψ

The meaning of a mental state condition is defined by means of the mental
state of an agent. An atom bel(i, φ) is true whenever φ follows from the belief

4 In a multi-agent setting it is useful to introduce additional labels instead of agent
names i, e.g. me to refer to the agent itself and allother to refer to all other agents,
but we will not discuss these here in any detail.

base of the mental model for agent i. An atom goal(i, φ) is true whenever φ
follows from one of the goals of the mental model for agent i. This is in line
with the usual semantics for goals in Goal, which allows the goal base to be
inconsistent (see [10] for details). Note that we overload |=.

Definition 4. (Semantics of Mental State Conditions)
Let m be a mental state and m(i) = 〈Σi, Γi〉. Then the semantics of mental state
conditions is defined by:

m |= bel(i, φ) iff Σi |= φ
m |= goal(i, φ) iff ∃γ ∈ Γi such that γ |= φ
m |= ¬ψ iff m 	|= ψ
m |= ψ ∧ ψ′ iff m |= ψ and m |= ψ′

4.2 Actions

Goal has a number of built-in actions and also allows programmers to introduce
user-specified actions by means of STRIPS-style action specifications. The pro-
gram discussed in Section 5 provides examples of various user-specified actions.
In the definition of the semantics we will abstract from action specifications
specified by programmers and assume that a fixed set of actions Act and a (par-
tial) transition function T is given. T specifies how actions from Act, performed
by agent i, update i’s mental state, i.e., T (i, a,m) = m′ for i an agent name,
a ∈ Act and m,m′ mental states. All actions except for communicative actions
are assumed to only affect the mental state of the agent performing the action.

The built-in actions available in Goal (adapted to distinguish between men-
tal models) that we need here include ins(i, φ), del(i, φ), adopt(i, φ), drop(i, φ)
and communicative actions of the form send(i,msg) where i is an agent name
and msg is a message of the form •φ, ?φ or !φ. The semantics of actions from
Act and built-in actions performed by agent i is formally captured by a mental
state transformer function M defined as follows:

M(i, a,m) =
{
T (i, a,m) if a ∈ Act and T (i, a,m) is defined
undefined otherwise

M(i, ins(j, φ),m) = m⊕j φ
M(i,del(j, φ),m) = m�j φ

M(i,adopt(j, φ),m) =
{
m ∪j φ if φ is consistent and m 	|= bel(i, φ)
undefined otherwise

M(i,drop(j, φ),m) = m−j φ
M(i, send(j,msg),m) = m

where m×j φ means that operator × ∈ {⊕,�,∪,−} is applied to mental model
m(j), i.e. m ×j φ(i) = m(j) × φ and m ×j φ(k) = m(k) for k 	= j. To define
the application of operators to mental models, we use Th(T) to denote the
logical theory induced by T , i.e. the set of all logical consequences that can
be derived from T . Assuming that m(i) = 〈Σ,Γ 〉, we then define: m(i) ⊕ φ =
〈Σ ⊕ φ, Γ \ (Th(Σ ⊕ φ)〉, m(i) � φ = 〈Σ � φ, Γ 〉, m(i) ∪ φ = 〈Σ,Γ ∪ {φ}〉, and

m(i) − φ = 〈Σ,Γ \ {γ ∈ Γ | γ |= φ}〉. Note that sending a message does not
have any effect on the sender. There is no need to incorporate any such effects in
the semantics of send since such effects may be programmed by using the other
built-in operators.

It is useful to be able to perform multiple actions simultaneously and we
introduce the + operator to do so. The idea here is that multiple mental actions
may be performed simultaneously, possibly in combination with the execution
of a single user-specified action (as such actions may have effects on the ex-
ternal environment it is not allowed to combine multiple user-specified actions
by the + operator). The meaning of a + a′ where a, a′ are actions, is defined
as follows: if M(i, a,m) and M(i, a′,m) are defined and M(i, a′,M(i, a,m)) =
M(i, a,M(i, a′,m)) is a mental state, then M(i, a+a′,m) = M(i, a′,M(i, a,m));
otherwise, a+ a′ is undefined.

In order to select actions for execution, an agent uses action rules of the form
if ψ then a, where a is a user-specified action, a built-in action, or a combination
using the +-operator. An agent A is then a triple 〈i,m,Π〉 where i is the agent’s
name, m is the agent’s mental state, and Π is the agent’s program (a set of
action rules).

4.3 Operational Semantics: Basic Communication

We first introduce a single transition rule for an agent performing an action.
Transitions “at the agent level” are labelled with the performed action, since this
information is required “at the multi-agent level” in the case of communicative
actions.

Definition 5. (Actions)
Let A = 〈i,m,Π〉 be an agent, and if ψ then a ∈ Π be an action rule.

m |= ψ M(i, a,m) is defined

m
a−→M(i, a,m)

Using Plotkin-style operational semantics, the semantics at the multi-agent
level is provided by the rules below. A configuration of a multi-agent system
consists of the agents of the multi-agent system {A1, . . . ,An} and the environ-
ment E, which is used to store messages that have been sent and are waiting for
delivery.5 The environment is used to model asynchronous communication, i.e.,
no handshake is required between sender and receiver of a message. Transitions
at the multi-agent level are not labelled. Actions other than the send action
only change the agent that executes them, as specified below.

Definition 6. (Action Execution)
Let “a” be an action other than send(j,msg).

Ai
a−→ A′

i

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,A′
i, . . . ,An, E

5 Other aspects of the environment might also be modeled, but that is beyond the
scope of this paper.

The following transition rule specifies the semantics of sending messages.

Definition 7. (Send)

Ai
send(j,msg)−→ Ai

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,Ai, . . . ,An, E ∪ {send(i, j,msg)}
The premise of the rule indicates that agent Ai sends a message to agent Aj .
To record this, send(i, j,msg) is added to the environment, including both the
sender i and the intended receiver j. Also note that a message that is sent more
than once has no effect as the environment is modeled as a set here (this is the
case until the message is received).6

Three rules for receiving a message are introduced below, corresponding to
each of the three message types. In each of these rules, the conclusion of the
rule indicates that the mental state of the receiving agent is changed. If agent
j receives a message from agent i that consists of a declarative sentence, it has
the effect that the mental model m(i) of the mental state of the receiver j is
modified by updating the belief base of m(i) with φ. In addition, any goals in the
goal base of m(i) that are implied by the updated belief base are removed from
the goal base to ensure that the rationality constraints associated with mental
models are satisfied.

Definition 8. (Receive: Declaratives)

send(i, j, •φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j, •φ)}
where:

– m′(i) = 〈Σ ⊕ φ, Γ \ Th(Σ ⊕ φ)〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k 	= i.

The condition m′(k) = m(k) for k 	= i ensures that only the mental model
associated with the sender i is changed.

The rule below for interrogatives formalizes that if agent i communicates a
message ?ϕ of the interrogative type, then the receiver j will assume that i does
not know the truth value of φ. Accordingly, it removes φ using the � operator
from the belief base in its mental model of agent i to reflect this.

Definition 9. (Receive: Interrogatives)

send(i, j,?φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j,?φ)}
where:

– m′(i) = 〈(Σ � φ)) � ¬φ, Γ 〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k 	= i.

6 The implicit quantifier allother may be used to define a broadcasting primitive:

broadcast(msg)
df
= send(allother, msg). In the rule above, in that case, for all

i �= j send(i, j, msg) should be added to E, but we do not provide the details here.

Remark An alternative, more complex semantics would not just conclude that
agent i does not know φ but also that i wants to know the truth value of φ,
introducing a complex proposition Kiφ into the model of the goal base of that
agent. This would involve nesting of operators, or including Kiφ in the goal base.

The rule below for imperatives formalizes that if agent i communicates a
message !φ of the imperative type, then the receiver j will assume that i does
not believe that φ is the case, and also that φ is a goal of i. Accordingly, it
removes φ using the � operator and adds φ to its model of the goal base of
agent i.

Definition 10. (Receive: Imperatives)

send(i, j,?φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j,?φ)}
where:

– m′(i) = 〈Σ � φ, Γ ∪ {φ}〉 if φ 	|= ⊥ and m(i) = 〈Σ,Γ 〉;
otherwise, m′(i) = m(i).

– m′(k) = m(k) for k 	= i.

Note that this semantics does not refer to the actual mental state of the
sender, nor does it define when a sender should send a message or what a receiver
should do with the contents of a received message (other than simply record it
in its mental model of the sending agent).

4.4 Operational Semantics: Conversations

As is well-known, in concurrent systems one needs mechanisms to ensure that
processes cannot access a particular resource simultaneously. A similar need
arises in multi-agent systems, but this has received little attention in the agent
programming community so far. Emphasis has been put on the fact that agent
communication is asynchronous. However, in order to ensure that only one agent
has access to a particular resource at any time, agents need to be able to coor-
dinate their activities and synchronize their actions.7 Of course, asynchronous
communication allows to implement synchronization between agents. We argue,
however, that it is useful to have predefined primitives available in an agent pro-
gramming language that facilitate coordination and synchronization, as is usual
in concurrent programming [16]. We introduce a mechanism that fits elegantly
into the overall setup of communication primitives introduced above, using the
notion of a conversation.

The basic idea is that an agent can engage only in a limited number of
conversations at the same time. By viewing a conversation as a resource, the
7 Note that perfectly symmetrical solutions to problems in concurrent programming are

impossible because if every process executes exactly the same program, they can never
‘break ties’ [16]. To resolve this, solutions in concurrency theory contain asymmetries
in the form of process identifiers or a kernel maintaining a queue.

limit on the number of conversations an agent can participate in simultaneously
thus introduces a limit on access to that resource. For our purposes, it will suffice
to assume that an agent can participate in at most one conversation at the same
time.

More specifically, a parameter representing a unique conversation identifier
can be added when sending a message, i.e., send(c : j,msg) specifies that the
message msg should be sent to agent j as part of the ongoing conversation c. We
also allow conversations with groups of more than two agents which is facilitated
by allowing groups of agent names {. . .} to be inserted into send(c : {. . .},msg).
A message that is sent as part of an ongoing conversation c is handled similarly
to a message that is not part of a specific conversation. Whenever a conversation
c has been closed (see below), sent messages that are intended to be part of that
conversation are “lost”, i.e. nothing happens. To initiate a conversation, the
term new can be used instead of the conversation identifier. That is, whenever
an agent i performs a send(new : g,msg) action where g is an agent or a
group of agents, agent i initiates a new conversation. Because agents can only
engage in a limited number of conversations at the time, it may be that an
initiated conversation is put on hold initially because one of the agents that
should participate already participates in another conversation.

Semantically, to be able to model that a conversation is ongoing, we split the
environment into a set A of active conversations, a queue Q of pending conver-
sations, and a set M of other pending messages. A message to initiate a new
conversation is added to the queue if at least one agent that should participate
is already present in the set A or the queue Q. The check on Q guarantees that
a conversation is not started when another conversation requiring the participa-
tion of one of the same agents is still on hold in the queue (“no overtaking takes
place”). Otherwise, the message is directly added to the set of active conversa-
tions.

Whenever a message send(c : i, g,msg) that initiated a conversation is part
of the set A, written c ∈ A, we will say that conversation c is ongoing, and
when such a message is part of the queue Q, written c ∈ Q, we will say that
conversation c is put on hold. Since the rules for receiving messages remain
essentially the same, we only provide the rules for sending a message at the
multi-agent level. The following rule specifies the semantics of sending a message
that is part of an ongoing conversation.

Definition 11. (Send: Ongoing Conversation)

Ai
send(c:j,msg)−→ A′

i c ∈ A

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A,Q,M ′〉

where M ′ = M ∪ {send(c : i, j,msg)}.

The following transition rule specifies the semantics of messages that are used to
initiate conversations. We use + (e.g., Q+send(c : i, g,msg)) to add a message
to the tail of a queue. The set of active conversations A and the queue Q store

information about participants in conversations, as this may be derived from
send(c : i, g,msg), where agents i and g are participants. We write agent(A,Q)
to denote the set of agents in A and Q.

Definition 12. (Send: Initiating a Conversation)
Let g be a set of agent names, and c a new conversation identifier not yet present
in A or Q.

Ai
send(new:g,msg)−→ A′

i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A′, Q′,M ′〉

where if ({i}∪g)∩agents(A,Q) = ∅ then A′ = A∪{send(c : i, g,msg)}, Q′ = Q
and M ′ =

⋃
k∈g send(c : i, k,msg), and otherwise A′ = A, Q′ = Q + send(c :

i, g,msg), and M ′ = M .

This semantics specifies that we cannot simply allow a conversation between two
agents to start when these agents are not part of an ongoing conversation, as
this may prevent a conversation between another group of agents involving the
same agents from ever taking place. The point is that it should be prevented
that “smaller” conversations always “overtake” a conversation between a larger
group of agents that is waiting in the queue.

As conversations are a resource shared at the multi-agent level, it must be
possible to free this resource again. To this end, we introduce a special action
close(c) which has the effect of removing an ongoing conversation from the
set A and potentially adding conversations on hold from the queue Q to A.
This is the only essentially new primitive needed to implement the conversation
synchronization mechanism.

We need an additional definition: we say that F is a maximal fifo-set of
messages derived from a queueQ relative to a set of agent names Agt if F consists
of all messages send(c : i, g,msg) from Q that satisfy the following constraints:
(i) ({i} ∪ g) ∩Agt = ∅, and (ii) there is no earlier message send(c′ : i′, g′,msg′)
in the queue Q such that ({i} ∪ g) ∩ g′ 	= ∅.
Definition 13. (Send: Closing a Conversation)

Ai
close(c)−→ A′

i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A′, Q′,M〉

where, assuming that F is the maximal fifo-set derived from Q relative to
agents(A), if send(c : i, g,msg) ∈ A then A′ = (A \ {send(c : i, g,msg)}) ∪ F
and Q′ = Q \ F , and otherwise A′ = A and Q′ = Q.

Note that the transition rule for closing a conversation only allows the initia-
tor of a conversation, i.e. agent Ai, to close the conversation again. (Otherwise
agents that want to start their own conversation immediately might try to get
it going by closing other conversations.) Finally, as it is important that the ini-
tiating agent as well as other participating agents are aware that a conversation

has started or is ongoing, we assume a special predicate conversation(c, i) is
available, where c denotes a unique conversation identifier and i the initiating
agent, which can be used in the belief base of an agent to verify whether a con-
versation is ongoing or not. We do not provide the formal details here due to
space restrictions (see the next section for an example).

5 The Dining Philosophers

The dining philosophers is a classic problem in concurrency theory [16]. Below,
we show parts of a Goal program that implements a solution. The complete
program (for one philosopher agent) is listed in Appendix A. The currently im-
plemented version of Goal uses Prolog as a knowledge representation language,
which we also use here. We use numbers to refer to the action rules of the Goal
program. For convenience, when referring to the agent’s own mental model in
mental state conditions, we drop this parameter.

A number of philosophers are sitting at a round table where they each engage
in two activities: thinking and eating (1,2). Our philosophers only think when
they are not hungry and get hungry after thinking a while (see the action spec-
ifications). At the table an unlimited supply of spaghetti is available for eating.
A philosopher needs two forks, however, to be able to eat (3). Forks are available
as well, but the number of forks equals the number of philosophers sitting at the
table (one fork is between each two philosophers). It is thus is never possible for
all of the philosophers to eat at the same time and they have to coordinate. The
problem is how to ensure that each philosopher will eventually be able to eat.

Using our conversational metaphor for coordinating activities, the problem
of the dining philosophers can be solved elegantly at the knowledge level. In the
solution we present, the dining philosophers are assumed to be decent agents
that are always willing to listen to the needs of their fellow philosophers at the
table, and provide them with the forks when they indicate they require the forks
to eat. If a philosopher needs the forks to eat but they are not available, he will
initiate a conversation with his neighbors and indicate that he needs the forks
(4).8 If a philosopher i is eating and receives a request for forks from a fellow
philosopher X as part of a new conversation, i will finish eating and put down
the fork in between X and himself and notify X of this fact (8). A philosopher
i will put down a fork only upon being requested. As long as the conversation
is ongoing, i will not pick up the fork again. The philosopher that initiated the
conversation will pick up the fork after being informed by his neighbor that the
fork is on the table (6).9 The initiator of the conversation informs his neighbors
that he picked up the fork (6). Upon receiving a message from both neighbors

8 In the sent messages the direction of the forks (left, right) has been dropped as this
is just a matter of perspective, useful for keeping track of which fork has been picked
up or put down from a single philosopher’s perspective. From the point of view of
two philosophers, a fork is just “in between” them.

9 In fact, only when having initiated a conversation to require the forks, will a philoso-
pher pick up a fork in our solution.

that they do not know whether the fork is on the table or not (reflected in the
mental models of the neighbors), the initiator closes the conversation (7), and
another conversation involving one of the philosophers may be started. Rules
5 and 9 are used to update the philosopher’s own beliefs on the basis of its
mental models of other philosophers (which are changed due to the sending of
messages).

% i is the name of this philosopher agent
beliefs{ hold(fork,left). } goals{ hold(fork,left), hold(fork,right). }
program{
1. if true then think.
2. if true then eat.
3. if bel(hungry) then adopt(hold(fork,left), hold(fork,right)).
4. if goal(hold(fork,)), bel(not(forksAvailable), neighbours(X,Y))

then send(new:{X,Y},!hold(fork)).
5. if bel(neighbour(X,D), not(hold(fork,D))), bel(X, on(fork,table))

then ins(on(fork,table,D)).
6. if bel(conversation(Id,i)) then pickUp(fork,D) + send(Id:X, .hold(fork)).
7. if bel(conversation(Id,i), hold(fork,left), hold(fork,right), neighbours(X,Y))

bel(X,not(on(fork,table))), bel(Y,not(on(fork,table)))
then close(Id).

8. if bel(conversation(Id,X)), goal(X, hold(fork))
then putDown(fork,D) + send(Id:X, .on(fork,table), not(hold(fork))).

9. if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))
then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).

}
action-spec{

think{pre{not(hungry)}post{hungry}}
pickUp(fork,D){pre{on(fork,table,D)}post{hold(fork,D),not(on(fork,table,D))}}
eat{pre{hungry,hold(fork,left), hold(fork,right)}post{not(hungry)}}
putDown(fork, D){pre{hold(fork,D)}post{on(fork,table,D),not(hold(fork,D))}}

}
}

6 Conclusion

In this paper, we have introduced an alternative semantics for communication
in agent programming languages, based on the idea that a received message can
be used to (re)construct a mental model of the sender. We have made this idea
precise for the Goal agent programming language. Also, we have introduced
the concept of a conversation to synchronize actions and communication in a
multi-agent system. We have shown how these new constructs can be used to
program a solution for a classic problem in concurrency theory. We are currently
implementing these ideas to allow further experimentation and testing.

References

1. Austin, J.: How to Do Things with Words. Oxford University Press, London (1962)
2. Searle, J.: Speech acts. Cambridge University Press (1969)
3. Singh, M.: A social semantics for agent communication languages. In: Issues in

Agent Communication, Springer-Verlag (2000) 31–45
4. Chopra, A., Singh, M.: Constitutive interoperability. In: Proceedings of the 7th

International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’08). (2008) 797–804

5. Labrou, Y., Finin, T.: A semantics approach for KQML - a general purpose com-
munication language for software agents. In: Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94), ACM (1994)

6. FIPA: Fipa communicative act library specification. Technical Report SC00037J,
Foundation for Intelligent Physical Agents, Geneva, Switzerland (2002)

7. Singh, M.: Agent Communication Languages: Rethinking the Principles. IEEE
Computer 31(12) (1998) 40–47

8. Vieira, R., Moreira, A., Wooldridge, M., Bordini, R.: Formal Semantics of Speech-
Act Based Communication in an Agent-Oriented Programming Language. Artifi-
cial Intelligence Research 29 (2007) 221–267

9. Wooldridge, M.: Semantic Issues in the Verification of Agent Communication
Languages. Autonomous Agents and Multi-Agent Systems 3(1) (2000) 9–31

10. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.J.: A Verification Framework
for Agent Programming with Declarative Goals. Journal of Applied Logic 5(2)
(2007) 277–302

11. Dastani, M.: 2APL: a practical agent programming language . Journal Autonomous
Agents and Multi-Agent Systems 16(3) (2008) 214–248

12. Bulling, N., Hindriks, K.V.: Communicating Rational Agents: Semantics and Ver-
ification. (2009) submitted.

13. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.D., Meyer, J.J.C.: Semantics of commu-
nicating agents based on deduction and abduction. In: Issues in Agent Communi-
cation, Springer Verlag (2000) 63 – 79

14. Wooldridge, M.: An introduction to multiagent systems. John Wiley and Sons,
LTD, West Sussex (2002)

15. Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States.
MIT Press (1988)

16. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice
Hall (1990)

A Goal program for the dining philosophers

main i { % i, a number between 1 and N, is the name of the philosopher agent
knowledge{
neighbour(X,left) :- i>1, X is i-1.
neighbour(X,left) :- i=1, X is N. % N is the number of philosophers.
neighbour(X,right) :- i<N, X is i+1.
neighbour(X,right) :- i=N, X is 1.
neighbours(X,Y) :- neighbour(X,left), neighbour(Y,right).
forkAvailable(D) :- hold(fork,D) ; on(fork,table,D).
forksAvailable :- forkAvailable(left), forkAvailable(right).

beliefs{ hold(fork,left). }
goals{ hold(fork,left), hold(fork,right). }

program{
if true then think. % can only think when not hungry (see action spec)
if true then eat. % can only eat when hungry and holding forks

if bel(hungry) then adopt(hold(fork,left), hold(fork,right)).

% Initiate conversation with neighbors if you want to eat but forks are not
% available by sending an imperative: See to it that I hold the fork.
if goal(hold(fork,)), bel(not(forksAvailable), neighbours(X,Y))

then send(new:{X,Y},!hold(fork)).

% Ongoing conversation initiated by philosopher itself.
% Only in this case the philosopher will pick up forks.
if bel(neighbour(X,D), not(hold(fork,D))), bel(X, on(fork,table))

then ins(on(fork,table,D)).
if bel(conversation(Id,i)) then pickUp(fork,D) + send(Id:X, .hold(fork)).
% Close the conversation if I hold both forks and neighours have noticed this.
if bel(conversation(Id,i), hold(fork,left), hold(fork,right), neighbours(X,Y))

bel(X,not(on(fork,table))), bel(Y,not(on(fork,table)))
then close(Id).

% Ongoing conversation initiated by a neighbouring philosopher
% Only in this case a philosopher will put down a fork.
if bel(conversation(Id,X)), goal(X, hold(fork))

then putDown(fork,D) + send(Id:X, .on(fork,table), not(hold(fork))).
if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))

then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).
}
action-spec{

think{pre{not(hungry)}post{hungry}}
pickUp(fork,D){pre{on(fork,table,D)}post{hold(fork,D),not(on(fork,table,D))}}
eat{pre{hungry,hold(fork,left), hold(fork,right)}post{not(hungry)}}
putDown(fork, D){pre{hold(fork,D)}post{on(fork,table,D),not(hold(fork,D))}}

}
}

